

Description

TN73H Series are a set of three-terminal, low power, high voltage regulators implemented in CMOS technology. The series features extremely low quiescent current which is typically 2.0µA. They allow input voltages as high as 20V. The device provides large current with a significantly small dropout voltage.

TN73H Series consists of a high-precision voltage reference, an error correction circuit, an over temperature protection circuit, and a current limited output driver. They are available with several fixed output voltages ranging from 1.8V to 5.5V. CMOS technology ensures low dropout voltage and low current consumption.

TN73H Series are available in standard SOT-23、 SOT-23-3 and SOT-89 packages. Standard products are Pb-free and Halogen-free.

Features

- Maximum Output Current: 500mA
- Input Voltage Range: 3V~20V
- Quiescent current: 2uA(Typ.)
- Dropout Voltage: 140mV@100mA (V_{OUT}=3.3V)
- Output Voltage Range:1.8V~5.5V
- PSRR: 70dB @10KHz
- Fast Load Transient Response
- Good Line Regulation: 0.01%/V
- Good Load Regulation: 5mV@1mA≤I_{OUT}≤50mA
- Soft Start

Applications

- Battery Powered Equipment
- Voltage Regulator for Microprocessor
- Voltage Regulator for LAN Cards
- Wireless Communication Equipment
- Audio/Video Equipment

Typical Application Circuit

Pin Distribution

Functional Pin Description

Pin Name	Pin Function
VIN	Power Input Voltage
GND	Ground
VOUT	Output Voltage

Ordering Information

	└─ Package Type				
	SA:SOT-23				
	SC:SOT-23-3				
	SQ:SOT-89				
	——Output Voltage				
	28 : 2.8V 30 : 3.0V 33 : 3.3V				
	36:3.6V 40:4.0V 50:5.0V				
——— Output current tap					
	M : 500mA				

Orderable Device	Package	Reel (inch)	Package Qty (PCS)	Eco Plan ^{Note}	MSL Level	Marking Code	
TN73HM28SA	-						
TN73HM30SA					MSL1		
TN73HM33SA		7	2000			73HXX	
TN73HM36SA	501-23	1	3000	ROHS & Green			
TN73HM40SA	-					XX:Output Voltage	
TN73HM50SA						e.g. 30:3.0V	
TN73HM28SQ	- SOT-89					\square	
TN73HM30SQ							
TN73HM33SQ		SOT 90 7/1	7/13 1000/3000	1000/2000	Doll S & Croon	MGI 1	73HXX
TN73HM36SQ		1113	1/13 1000/3000	Rollo & Gleen	MOLI		
TN73HM40SQ							
TN73HM50SQ						e.g. 30:3.0V	
TN73HM28SC							
TN73HM30SC							
TN73HM33SC		7	3000	PollS & Groop	MSI 3	73HXXC	
TN73HM36SC	301-23-3		5000				
TN73HM40SC						XX:Output Voltage	
TN73HM50SC						e.g. 30:3.0V	

Note:

RoHS: TN defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Green: TN defines "Green" to mean Halogen-Free and Antimony-Free.

Function Block Diagram

Absolute Maximum Ratings Note1

Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Value	Unit
Input Voltage		-0.3~25	V
Output Voltage		-0.3~6	
	SOT-23	0.4	W
Power Dissipation	SOT-23-3	0.45	W
	SOT-89	0.66	W
	SOT-23	250	°C/W
Thermal Resistance, Junction-to-Ambient	SOT-23-3	220	°C/W
	SOT-89 150		°C/W
Junction Temperature	-40~ +125		°C
Storage Temperature Range		-55~ +150	°C
Lead Temperature&Time		260°C,10S	
Human Body Mode ESD Level (HBM)		5.5	KV

Note1: Exceeding or exposure to these absolute rating limits may damage the device permanently or affect its reliability

Recommended Operating Conditions

Parameter	Value	Unit
Supply Voltage	3~20	V
Operating Junction Temperature	0 ~ +125	°C
Operating Ambient Temperature	-40~ +85	°C

Electrical Characteristics

 V_{OUT} =3.3V, T_A=25°C , unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}		3		20	V
Output Voltage Accuracy	ΔVουτ	V _{IN} =V _{OUT} +2V, I _{OUT} =1mA	-2	Vout	+2	%
Output Current	Іоит	Within P _{D(Max.)}	500			mA
Quiescent Current	ΙQ	I _{OUT} =0A		2		μA
Dropout Voltago	Vdrop	V _{OUT} = 3.3V, I _{OUT} = 100mA, ΔV _{OUT} =2%		140		mV
Dropout voltage		V _{OUT} = 5V, I _{OUT} = 100 mA, ΔV _{OUT} =2%		115		mV
Line Regulation	ΔV_{LINE}	V _{IN} = 5∼12V, I _{OUT} =1mA			6	mV
Load Regulation	ΔV_{LOAD}	V _{IN} =12V, I _{OUT} =1~100 mA			20	mV
Short Circuit/Start Carrying Current	I _{SHORT}	VOUT Short to GND with 1Ω		60		mA
VOUT Temperature Coefficient	ΔV _{OUT} /(ΔT _A *V _{OUT})	I_{OUT} =1mA, 0°C ≤ T _A ≤ 120°C		90		ppm/°C
Power Supply Rejection Rate	PSRR	V _{IN} =5V _{DC} +0.5V _{P-P} f=10KHz, I _{OUT} =1mA		70		dB
Thermal shutdown Protection (OTP)	TSD	$(-1)^{-1}$		150		°C
OTP hysteresis	TSD_HYS	VIN-VOUT + Z V, IOUT-ZUIIIA		20		°C

Typical Electrical Curves

Test conditions: C_{IN}=1uF, C_{OUT}=10uF, V_{IN}=5V, V_{OUT}=3.3V,T_{OPR}=25°C(unless otherwise noted)

TN73H Series Low Dropout Regulators

Temperature (°C)

Line Transient

CH1:VIN CH2: VOUT

Load Transient CH1: IOUT CH2: VIN CH3: VOUT

VIN=12V, VO=3.3V, C_{IN}=1uF, C_O=10uF lo=3mA to 100mA VIN=7V, VO=3.3V, C_{IN}=1uF, C_O=10uF lo=3mA to 100mA

VIN=5V, VO=3.3V, C_{IN}=1uF, C_O=10uF Io=3mA to 500mA

VIN=7V, VO=3.3V, CIN=1uF, CO=10uF IO=3mA to 500mA

SOT-23 Dimensions in mm

0.05

SOT-23-3 Dimensions in mm

SOT-89 Dimensions in mm

SOT-23-5 Dimensions in mm

Contact Information

TANI website: http://www.tanisemi.com Email:tani@tanisemi.com

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up -to- date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the prod uct specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.